Cbp1 is required for translation of the mitochondrial cytochrome b mRNA of Saccharomyces cerevisiae.

نویسندگان

  • Maria A Islas-Osuna
  • Timothy P Ellis
  • Lorraine L Marnell
  • Telsa M Mittelmeier
  • Carol L Dieckmann
چکیده

Expression of the yeast mitochondrial cytochrome b gene (COB) is controlled by at least 15 nuclear-encoded proteins. One of these proteins, Cbp1, is required for COB mRNA stability. Delta cbp1 null strains fail to accumulate mature COB mRNA and cannot respire. Since Delta cbp1 null strains lack mature COB transcripts, the hypothesis that Cbp1 also plays a role in translation of these mRNAs could not be tested previously. 5'-End trimming of precursor COB RNA and other mitochondrial transcripts is dependent on Pet127. pet127 mutants accumulate high levels of precursor COB mRNA and have no mature mRNA. pet127 mutants respire well; this phenotype implies that COB precursor RNA is translated efficiently. With the expectation that a Delta cbp1 Delta pet127 strain might accumulate substantial levels of COB RNA, the double null strain was constructed and analyzed to test the hypothesis that Cbp1 is required for translation of COB RNA. The Delta cbp1 Delta pet127 strain does accumulate levels of COB precursor mRNA that are approximately 60% of the level of COB mRNA in the wild-type strain. However, cytochrome b protein is not synthesized, and thus the Delta cbp1 Delta pet127 strain does not respire. These results suggest that Cbp1 is required for translation of COB RNAs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suppressor analysis of mutations in the 5'-untranslated region of COB mRNA identifies components of general pathways for mitochondrial mRNA processing and decay in Saccharomyces cerevisiae.

The cytochrome b gene in Saccharomyces cerevisiae, COB, is encoded by the mitochondrial genome. Nuclear-encoded Cbp1 protein is required specifically for COB mRNA stabilization. Cbp1 interacts with a CCG element in a 64-nucleotide sequence in the 5'-untranslated region of COB mRNA. Mutation of any nucleotide in the CCG causes the same phenotype as cbp1 mutations, i.e., destabilization of both C...

متن کامل

The mitochondrial message-specific mRNA protectors Cbp1 and Pet309 are associated in a high-molecular weight complex.

In Saccharomyces cerevisiae, the nuclear-encoded protein Cbp1 promotes stability and translation of mitochondrial cytochrome b transcripts through interaction with the 5' untranslated region. Fusion of a biotin binding peptide tag to the C terminus of Cbp1 has now allowed detection in mitochondrial extracts by using peroxidase-coupled avidin. Cbp1 is associated with the mitochondrial membranes ...

متن کامل

CBT1 interacts genetically with CBP1 and the mitochondrially encoded cytochrome b gene and is required to stabilize the mature cytochrome b mRNA of Saccharomyces cerevisiae.

Mutation of a CCG sequence in the 5'-untranslated region of the mitochondrially encoded cytochrome b mRNA in Saccharomyces cerevisiae results in destabilization of the message and respiratory deficiency of the mutant strain. This phenotype mimics that of a mutation in the nuclear CBP1 gene. Here it is shown that overexpression of the nuclear CBT1 gene, due to a transposon insertion in the 5'-un...

متن کامل

Purification of Saccharomyces cerevisiae eIF4E/eIF4G/Pab1p Complex with Capped mRNA

Protein synthesis is one of the most complex cellular processes, involving numerous translation components that interact in multiple sequential steps. The most complex stage in protein synthesis is the initiation process. The basal set of factors required for translation initiation has been determined, and biochemical, genetic, and structural studies are now beginning to reveal details of their...

متن کامل

The largest mitochondrial translation product copurifying with the mitochondrial adenosine triphosphatase of Saccharomyces cerevisiae is not a subunit of the enzyme complex.

Mitochondrial adenosine triphosphatase isolated from a double mutant of Saccharomyces cerevisiae lacking cytochrome b apoprotein and subunit II of cytochrome oxidase does not contain the mitochondrial translation product (approximate molecular weight, 32,000) previously suggested to be a subunit of the enzyme complex.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 41  شماره 

صفحات  -

تاریخ انتشار 2002